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An efficient protocol for solid phase aminothiazole synthesis
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Abstract—An efficient synthesis of 2,4-diamino-5-ketothiazoles under solid phase conditions has been achieved by the reaction of
polymer supported amidinothioureas with a-haloketones. This novel synthetic approach involving traceless cleavage from the sup-
port is suited for automation, and allows solid phase combinatorial synthesis of 2,4-diamino-5-ketothiazoles in good yields and
purities.
� 2006 Elsevier Ltd. All rights reserved.
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The utility of solid phase reactions in combinatorial
library synthesis depends largely upon the efficiency of
the synthetic route selected and the availability of re-
agents. Since attractive targets for combinatorial synthe-
sis are often small organic molecules1 with useful
bioactivity profiles, rapid synthesis through simple
routes has great appeal. Aminothiazoles, with a wide
spectrum of well established bioactivity,2 are being con-
tinually investigated for newer therapeutic applications.
We have reported3 on the solution phase synthesis of
2,4-diamino-5-ketothiazoles 1 and their cytotoxic prop-
erties.4 Moreover, thiazole derivatives of type 1 are
reported to be potential inhibitors of cyclin-dependent
kinases (CDKs)5 and glycogen synthase kinase-3
(GSK-3).6

The increasing appearance of aminothiazole motifs in
potential drug candidates has resulted in the design of
solid phase routes7 to these molecules. A literature sur-
vey revealed only two reports8 on the solid phase synthe-
sis of 2,4-diamino-5-ketothiazoles. As part of our efforts
to develop versatile solid phase routes to these scaffolds,
we earlier reported the design and synthesis of a novel
thiocarbamoylamidine transfer reagent.9 We now report
an efficient, two-step procedure for the solid phase
synthesis of 2,4-diamino-5-ketothiazoles starting from
aminomethylpolystyrene and employing the above
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reagent in a solid phase thiocarbamoylamidine transfer
protocol.

The design of the solid phase route was based on a retro-
synthesis, which is outlined in Scheme 1. We proposed
to access the target 1 through a [4+1] ring construction
approach in which the C–N–C–S unit for the thiazole
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Scheme 1. Retrosynthesis of 2,4-diamino-5-ketothiazoles 1.
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Table 1. Sulfur analysis data of polymer bound amidinothioureas 9a–d

Amidinothiourea 9 R1 S capacity (%)

a C6H5 0.80
b 4-ClC6H4 1.50
c 4-CH3C6H4 0.70
d 4-CH3OC6H4 1.40
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Scheme 3. Solid phase synthesis of 2,4-diamino-5-ketothiazoles 1.
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ring would be derived from an amidinothiourea 2 and
the remaining C atom from an a-haloketone 3. It was
decided to anchor the amidinothiourea unit onto a solid
support using the thiocarbamoylamidine transfer
protocol. The transfer reagents 5 required for this step
could be synthesized easily from commercially available
1-amidino-3,5-dimethylpyrazole 6 and isothiocyanates
7, as reported earlier, as a prelude to the present
work.9

The first step in the synthesis involved the development
of polymer anchored amidinothioureas 9 (Scheme 2).
This required the selection of amino polymer 8,10,11

which could be reacted with 5 to access polymer an-
chored amidinothioureas 9 which are analogous to 2.
Prior to this step, the reaction conditions for the thio-
carbamoylamidine transfer were optimized using pilot
reactions in solution phase conditions. For the optimiza-
tion step, various primary amines 4 and differently
substituted thiocarbamoylamidine transfer reagents 5
were employed.12 The conditions for the reaction be-
tween polymer 8 and transfer reagents 5 were also inves-
tigated in a number of trials, and the optimized
conditions were identified by evaluating the extent of
thiocarbamoylamidine transfer reaction13 by varying
the reagent concentrations and the reaction time or tem-
perature. Thus, two equivalents of transfer reagent 5a–d
was added to aminomethylpolystyrene beads swelled in
acetonitrile in four separate reaction vessels based on
the amino group capacity of the resin. The reaction
flasks were kept at 70–75 �C in a constant temperature
bath and the reactions proceeded in a parallel fashion.
The resin, after work up,14 was subjected to sulfur anal-
ysis (Table 1) and was assigned structure 9 based on IR
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Scheme 2. Synthesis of polymer bound amidinothioureas 9 using
thiocarbamoylamidine transfer reagents 5.

Table 2. 2,4-Diamino-5-ketothiazoles 1a–h

Thiazole 1 R1 R2

a C6H5 C6H5

b 4-ClC6H4 C6H5

c 4-CH3C6H4 C6H5

d 4-CH3OC6H4 C6H5

e C6H5 4-ClC6H4

f20 C6H5 2-C10H7

g21 4-ClC6H4 Indol-3-yl
h22 4-ClC6H4 Coumarin-3-yl
studies as well as on the results from solution phase
model reactions.

The next step was the reaction of polymer anchored
amidinothioureas 9 with various a-haloketones 3. It
was decided to employ a-bromoketones as the active
methylene compounds in view of the greater reactivity
of these compounds in nucleophilic substitution reac-
tions as well as their commercial availability. The reac-
tion of resins 9 with 3 in DMF15 proceeded through
an acyclic S-alkylisothiourea intermediate, which
cyclized to a thiazoline. This underwent eliminative
aromatization to afford tracelessly, 2,4-diamino-5-
ketothiazoles 1 (Scheme 3), after work-up,16 in good
yields and purities. The generality of the synthetic route
was evaluated by employing both aryl and heteroaryl
substituted haloketones 3, and the representative com-
pounds thus synthesized are summarized in Table 2.
The crude yields of 1 were in the range of 88–92% and
the purities of the crude samples17 were in the range
85–90%. After purification by column chromatography
on silica, the pure thiazoles were obtained in 60–73%
yields.
Yield (%) Mp (�C) Lit. mp (�C)

65 186–87 18619

73 200–01 200–019

68 155–56 155–5619

67 205–06 205–0619

72 196–98 1969

70 221–23 —
67 258–59 —
60 >320 —
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In conclusion, a simple, efficient, two-step synthesis of
2,4-diamino-5-ketothiazoles suited to solid phase combi-
natorial synthesis has been achieved. This synthetic
route allows easy amplification of molecular diversity
in the target core structure by varying the isothiocya-
nates and a-haloketones, many of which are commer-
cially available. The reaction conditions are mild,
work-up is simple, and the steps are automation-
friendly. The reuse of the spent resin was also investi-
gated.18 Further studies on the mechanistic aspects as
well as the construction of combinatorial libraries are
in progress and will be reported in due course.
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